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The aim of this paper is to make a complete investigation concerning the inter­
action between the rate of convergence of Cesaro means of Walsh-Fourier series
and the modulus of continuity. We give the best possible sufficient conditions with
respect to the modulus of continuity that implies the convergence at a given rate.
We also give the best necessary conditions. These questions are studied in LP
(I ,;;; p < (0) and in uniform norms. As a consequence, we receive the best results for
the Lipschitz classes. The solution of a problem of F. Moricz and A. H. Siddiqi
(1992, J. Approx. Theory 70, 375-389), i.e., the characterization of the Favard
(saturation) classes of the Cesaro summation, can be derived from our theorems.
c' 1994 Academic Press. Inc

1. INTRODUCTION

Let N denote the set of natural numbers, and P the set of positive
integers. Let rk represent the kth Rademacher function, i.e.,

periodic with 1, and

{
+ 1

ro(.x-) =
-1

if O~x<~,

if ~~ x < 1

(k E P).

The Walsh functions in the Paley enumeration can be defined as products
of Rademacher functions as

00

»"n = n rZ\
k~O

• This research is supported in part by the Hungarian National Science Foundation under
Grant 2085.

31
0021-9045/94 S6.00

Copyright :{"'I 1994 by Academic Press. loe
All rights of reproduction in any form reserved.



32 S. FRIDLJ

where n = L;~~ 0 nk 2k (nk =°or I, n EN). The Dirichlet kernels with respect
to the Walsh system are defined by the sum

k I

D k = I Wj
j~O

(k E Pl.

It is known that D 2, (n EN) enjoys the nice property

if 0 ~ x< 2 ",

otherwise.
( 1)

The collection of functions of the form

n I

p= L akwk
k~O

with real ak's, i.e., the set of Walsh polynomials of order less than n E P
is denoted by .OJ". Recall that 9 2, (n EN) coincides with the set of s"',
measurable real functions, where .9/" denotes the (J algebra generated by the
dyadic intervals

IIl(k) = [k2 II, (k + 1) 2 II) (0 ~ k < 2n
, kEN).

In this paper we study approximation problems in the U = U[O, I)
(I ~p< cr;) spaces (with respect to the usual Lebesgue measure). Uniform
approximation is studied in Cw. That is the closure of the set of the Walsh
polynomials in the uniform norm. In other words Cw consists of the
functions continuous at every dyadic irrational of [0, I ), continuous from
the right at every point of [0, I), which have a finite limit from the left on
(0, I].

From now on XP, 1~ P ~ rxJ, denotes LP if 1~ P < rxJ, and Cw if p = a:J.

Set

IIIllr=(( IfIP)li
P

Ilfllx = ess sup Ifl

(1 ~ p < rxJ),

The best approximation of an f EX r (1 ~ p ~ 00) is defined as

EIl(f, XP) = inf III - Flip
PE;.J1l

(nEP).

Any x E [0, 1) can be uniquely written in the form

'x-'

X= L Xk 2 -(k+ll,

k=O
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where lim infk ~ co Xk = O. This is called the dyadic expansion of x. For any
x,YE[O,I) with dyadic expansions L.J:'=oxk 2 (k+ll, Lt~oYk2 (HI)

their dyadic sum is defined by
:x:

x+y= L IX k-YkI 2 -(k+l).

k~O

Let" (IE [0,1» denote the dyadic translation by 1, i.e.,

,,/(X)=I(X+l)

IfI EX P (1 ::::; p ::::; 00), then its dyadic X" modulus of continuity is defined
as

w,,(b, f) = sup III -,,/11,,
l<(j

(b > 0).

This X" modulus of continuity has some properties different from the
classical one. For instance, w,,(2b, f) cannot be dominated by Cw,,(b, f)
(C> 0 absolute constant). However, if 2- n

- I::::; b, < b2 < 2 - n for some
nEN, then

Consequently, (wp (2 -n, f), n E N) completely characterizes the X" modulus
of continuity of1 EX".

In particular, (see [3,8]), for any nonnegative sequence W= (w n , nEN)
tending monotonically to O-----in notation W \0 O-----there exists I EXP such
that

(nEN).

Such an W = (w n , n E N) is called a dyadic modulus of continuity. Let H;
denote the Holder class generated by OJ, i.e.,

H; = {IE XP: w,,(2 -11,/) = O(wn ) as n -+ oo}.

Similarly, H;f (fEX") is the Holder class generated by wf=(w,,(2- n
,/),

nEN).
The Walsh-Fourier coefficients of a function I E X I are defined by

j(n) = (/""'n (nEN).

The Walsh-Fourier series of I is the series

,YJ

L j(n) ""'n'
n~O
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Furthermore, let Sni denote the nth partial sum of the Walsh-Fourier
series of f, i.e.,

n - I

Snf= I j(k) Wk

k~O

(nE Pl.

The following inequalities are due to Watari [12]. These show that there
is a strong connection among w p (2 -n,f), E 2n(f, X 1'), and III - S 2nIli I'
(f EX 1', n EN). In particular,

(2)

and

(3 )

Remark. It is known that the Walsh functions are the characters of the
dyadic group G. Consequently, in many problems concerning the Walsh
system the structure of the dyadic group plays an important role. Using
an almost one-to-one measure preserving map that structure can be
transferred to [0, 1). (For details of this correspondence see [9].) This is,
for instance, how the concept of the function space Cw arises from the
space of continuous functions on G. Although we work on [0, 1) in this
paper all the results and methods used can be formulated also on G.

MAIN RESULTS

The (C, 1)-means of an I E X I are defined as

(nEP).

If K n denotes the nth Walsh-Fejer kernel, i.e.,

(n E P),

then (Tni = I * Kn, where * stands for dyadic convolution.
Yano [13] has proved that IIKnll 1 ~ 2 (n E Pl. Consequently,

III- (Tnfll p -+ 0 as n -+ 00 (fE XI', 1~ p ~ (0). However (see, e.g., [5,9]),
the rate of convergence cannot be better than O(n I) (n -+ (0) for non­
constant functions. In the following theorems we use the dyadic X I'

modulus of continuity to characterize the set of functions in X I' whose
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(C, I )-means converge at a given rate. The rate of convergence is
prescribed by a sequence a = (ak' kEN) '" O.

As we will see all the necessary, and sufficient conditions with respect to
the X P modulus of continuity in Theorems 2-4 are inequalities, whose left
sides are monotonically increasing as n - 00, while the right side is equal
to (nan, n EN). This inspires the idea that we only have to deal with
sequences IX for which (kIXk> kEN) is monotonically increasing.

Indeed, the following is true.

THEOREM 1. Let fEXP (l:::;;p:::;;oo) and a=(IXk>kEN) '" O. Then
Ilf-O"nfllp=O(an) implies Ilf-O"nfllp=O«lln)infk>nkad (k,nEN,
n - 00).

Remark. The above theorem includes the solution of the saturation
problem with respect to the Cesaro means. 'Indeed, if infk E N kiX k = 0 then
Ilf - 0"dll p = O(ad, k - 00 (l:::;; p ~ 00) if and only if f is equivalent to a
constant function. In particular [9J, if Ilf -O"dllp=0(k- 1

), k- 00, thenf
is necessarily constant.

We have formalized our main results in three theorems.

THEOREM 2. Let 2 ~ p < 00 and a = (ak> kEN) '" O.

(i) Iffor anfEXP

(n - (0)

then

(n --+ (0).

(ii) If w is a dyadic modulus of continuity for which

(n --+ 00 )

then there exists f E H; such that

(n --+ 00 ).

(iii) lffor anfEXP

(n - 00 )
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(n -+ co).

and

Then

(iv) Let

ill' = {fEXI': Ct k P - lW:( Ilk,.f)rp

= O(nCl,,) (n -+ CO)}

U HW/=QI' p.

IE 1:p

In the following theorem I < p ~ 2, and the corresponding results are
dual to those in Theorem 2.

THEOREM 3. Let I < p ~ 2 and Cl = (~b kEN) \. O.

(i) If for an f E X I'

then

(n-+co)

lif- G",JII" = O(~,,) (n-+co).

(n -+co)

(ii) If w is a dyadic modulus of continuity for which

Ct k" IwrY" #O(n~,,)

then there exists f E H; such that

(n -+ co ).

(iii) Iffor anfEXP

(n -+co)

then

(n -+ Cf)).
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CESARO MEANS OF WALSH--FOURIER SERIES 37

and

Then

I p= {j E XP: IIf - 6,Jll p= O(Ct,,) (n -+ co)}.

U H;r=Q;.
fEIp

The next cases, l.e., when p = 1 or et:;, are slightly different from the
previous cases.

THEOREM 4. Let p = 1 or cx), and ex = (Ctk> kEN) " O.

(i) If for an f E X p

"I wp(l/k,f)=O(nCt,,)
k~1

then

Ilf - a,Jll p= O(Ct,,) (n -+ (fJ).

(ii) If W is a dyadic modulus of continuity for which

"L wk=FO(nCt,,)
k~1

then there exists f E H; such that

Ilf - 6,Jll p=F 0(:>:,,)

(iii) Iffor anfEXP

(n -+ et:;).

Ilf - a"fll p = O(a,,)

then

max kWp(l/k,f)=O(nCt,,)
O<k<n

(n -+ et:;).

(iv) Let

Q;*={jEXP: max kWp(1/k,f)=O(nC(I1)(n-+x)}
O<k<.n
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Remarks. 1. If a growth order condition with respect to the XP
modulus of continuity is satisfied by an IE XP then the same holds for any
element of the Holder class generated by f This means that the best
possible sufficient condition is the one which induces the largest subset of
the set of Holder classes contained by-using the notation of the above
theorems-L'p. Similarly, the best necessary condition is the one that
induces the smallest subset of the set of Holder classes which covers L'p.
The (ii) (resp. (iv)) parts of Theorems 2-4 show that the corresponding
sufficient (resp. necessary) conditions in (i) (resp. (iii)) are the best possible
in this terminology.

2. Theorem 1 together with Theorems 2-4 has the following conse­
quence. If Ct, (3 '" 0 with infk>nkCtk=O(n{3n), n-HtJ, then II/-<Tnfll p =
O(Ct n) implies Ilf-<Tnfll p =O({3n) (I ~p~oo). Moreover, if at the same
time infk>n k{3k # O(nCtn), n ...... 00, then there exists/E XP with III -<Tn/li p =
O({3n) and III -<Tnfll p # O(Ctn)·

AUXILIARIES

In order to prove our theorems we need some preliminary results
and lemmas. C will denote an absolute positive constant and Ap , Bp ,

depending only on p, denote positive constants, not necessarily the same in
different occurrences.

Let LO denote the collection of sequences g = (gk> kEN), where each gk
is a real valued measurable function defined on [0, 1). For any 1~ p,
q ~ 00 denote by UW), resp. I P(U), the Banach spaces of gEL°for which

resp.
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is finite, and these quantities serve as norms in them. (If p, q = 00 then we
make the obvious modifications.) Concerning the properties of these spaces
we refer to [10]. Set

and

Clearly AI E L0. The quadratic variation of an IE L 1 is defined as

Using the above notations we have IIQlll p = IIA/I/u(l2). It is known [7] by
Paley's inequality that the norms IIQlll p and IIfll p are equivalent for any
1 <p< oo,fEU, i.e.,

(4 )

The following inequalities, which are applied frequently in the sequel, are
immediate consequences of (1 ).

and (kEN,IEXP, 1~p~ 00).

(5)

Suppose gELO and/ELP (2~p~00). Then

and

(6)

(7)

The case p = 00 is trivial in (6). If p < 00 then use the Minkowski
inequality for the LP/2 space to see that

We show (7) by using an interpolation with respect to the LP(lq) spaces.
We note that I -+ AI is a linear map from LP to L0. Therefore, by the inter­
polation theorem of [9] it is enough to show that A is of type (L 2, L 2W»
and (LOC,Loc(lOO)). Obviously, IIMIIL1(ll)=lIfIIL2. Since II,1dlloc~\lfL

(k EN), we have by (5)

IIA/llpl/")= IIA/II/XILX)~ 11/11p·
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II Mil fP(!P1 ~ Ilfll u,

(8 )

(9)

It is easy to see that similarly to the LP cases the space dual to LP(Lq)
is P'W), where lip + lip' = I, I/q + l/q' = I (I ~ p, q < ef)). Moreover,
the Riesz-representation theorem for this case is of the form

Similar relations hold for the lP(L q) spaces. Therefore, (8) follows from (6)
by duality arguments. Furthermore, (7) implies

Ilfll p = sup {( k~O AdAk g: Ilgll p ' ~ I}

~sup {{ kto AdAkg: IIi\gllu(!P)~ I}

~ IIMII U(/PI (lip + lip' = 1, 1~ p ~ 2).

Let d denote the restriction of the operator of the dyadic derivative onto
2/, i.e., if P" = 'LZ;: bak H'k E .~, (n E P) then

" I

dP" = I kak Wk'
k~O

We refer to [9J for details. It is known [I J that there are inequalities with
respect to the dyadic derivative which are similar to the classical Bernstein
and Jackson inequalities. They are of the form on qJ

IldP"lI p ~ 2n IIP"llp,

Ek(P", XP) ~ Apk I IldP"ll p (P" E qJ", n, k E P).

In particular, we have by (2) and (3) that

p-k IldAdll p~ IIAdli p ~ A p2 kIldAdll p

(fEXP, I ~P~OO,kEN). (10)
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The following lemma shows that the investigation of convergence of Cesaro
means can be restricted to indices of the form 2" (n EN).

LEMMA l. Let f EX P (I ~ p ~ CD). Then

and

(k, 11 E N, 0 ~ k ~ 2").

Proof of Lemma 1. We have by definition and by (5) that

III - ()2n - 1fll p~ liS2nU - () 2" + If) II p = ~ II S2nU - () 2"f)ll p

~ ~ (IIf - ()2n fll p -IIA,Jll p

-lIf-S2n+1fllp) UEXP,IlEN).

Since A //(1 - (J 2n +if) = 2 //- 'dA,J it follows from (10) and (5) that

Similarly,

IIf - S2"+,fll p= IIU - ()2"' If) - S2""U - ()2" +If) lip

~21If-()2n+lfllp'

Combining these inequalities we have

On the other hand [2] for all k, 11 E N, 0 ~ k ~ 2",

This implies

Since

we have by the same estimations as those above that

(k,nEN,O~k~2"). I
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In the following two corollaries let I E X P ( 1~ p ~ CXJ) and
a = (ab kEN) \, 0 be given.

COROLLARY 1. III -udll p = O(ak ) is equivalent to III -u2klllp = O(a2k)
(k ....... CXJ ).

This is an immediate consequence of Lemma I.

COROLLARY 2.

if and only if

(k ....... (0) (11 )

hold.

and

Indeed, it is easy to see by definition that

(n EN).

Hence by (2), (3)

II dS2nlll p~ 2" III-u2n/llp + 2" III - S2n/ilp ~ 3·2" III-u2n/ll p,

and

Consequently, by Corollary 1, (11) follows from (12). To complete the
proof observe that (II) implies E 2n(f, XP) = O(a 2n) (n ....... (0). I

Corollary 2 shows the strong relation between the Cesaro means and the
dyadic derivative. For the general theory with respect to such relations we
refer to [11].

The following inequality will be used frequently. If I EX p (1 ~ p ~ CXJ )

and 1~ q < 00 then for any n E N

C~O (2 k II Lldllp)Qfq ~ 1/4 C~O (2 k
W p (2- k,f»Q)'/Q

-2nwp (2-- n - 1,f). (13)

Indeed, since IILldllp~ III -S2k/llp-111 -S2k+1fllp it is clear by (2) and
the triangle inequality that
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C~o (2 k IIAJllp)q)'lq ~Cto (2 k(llf -S2k fll p-llf -S2k+ l fll pWr,q
(

n ) l/q

~ k~O (2
k Ilf - S2k fllp)q

(

n ) l/q

- k~ 1 (2 k
-1 Ilf - S2k fll p)Q - 2n II!- S2n+ Ifll p

~ 1/2 C~o (2 k IIf - S2kfllp)q) l/q - 2n IIf - S2n+1fllp

~ 1/4 eto (2 k wp(2 -\ f))qrQ

- 2nwp(2 -n- t,f).

LEMMA 2. Letf=L.:~oanrnEXP (1 ";;p<oo) and r:x.=(r:x.k, kEN) '" O.
Then

(n ~ 00)

if and only if

Proof of Lemma 2. First let, f E X P such that

(n ~ 00).

Clearly, E2n(f, XP),,;; wi2 -n,f) = O(r:x. 2n) (n -+ 00). Note by definition that
dS2nf=r.Z:~2kakrk (nEP). Applying Kintchin's (see, e.g., [9]) inequality
we have

(n E Pl.

Hence, IIf - anfll p = O(r:x.n) (n -+ 00) follows from Corollary 2.
Now letfEXP such that Ilf-a,Jllp=O(r:x.n) (n~oo). Applying (2),

(13), and, again, Kintchin's inequality we obtain
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Ct (2 k
W p(2- k,f)f)'i

2
~4Ct (2 k IILldll)2)'2 +4.2"wp(2-,,-1,f)

= 4 C~: (2kak)2)'2 + 4· 2"wp (2 -" -1, f)

~ A p(lldS2nfll p + 2"E2,,(f, XP)) (n E P).

The proof can be completed by Corollary 2. I

PROOFS

Pf(}(!l of Theorem 1. Applying Corollary 1 we need only prove that
Ilf - a 2nfll p = 0(a2,,) implies IIf - a 2"fll p = 0«(1/2") infh " 2k a2k). Since
IldS2"fll p = 0(2"a2") increases as n -> CI:) it can only be dominated by
C2"cx 2" if

IldS2"fll p =0(inf 2k a2k)
k~n

(/1 -> 00 ). (14 )

Let Ilf - S2"fll p = {32" = 0(a2n). If 2"{32n is quasi-monotonically increasing
then the proof can be completed by Corollary 2. If this is not the case, then
Jet 1;) = 1 and

(k E P).

Observe that

(kEN).

Therefore, we have by (14) that

(kEN).

On the other hand, for any j EN there exists

N;= min{k EN: tk > j}.

Then

and
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(jE N).

(n - CfJ ).

We can finish the proof by Corollary 2, I

Proof of Theorem 2. Let f EX P such that

C~I (2kwp (2 -k, f)2) 1/2 = O(2n IX 2n)

Consequently (see (2) and (3», E2n(f,XP)=O(rx2n) (n-CfJ). We have by
(2) and (10) that

Therefore, it follows from (6), (4), and (2) that

I\dS2nfli p ~ Ap \\A(dS2nf)\\ XP(l2)

~ A p IIA(dS2nf)lIt2(XP) = A p C~: IId(Jd)II;) 1/2

~4ApCt: (2 k
W
p(2- k,f)fY

/
2 =O(2"1X 2n)

In view of Corollary 2, this completes the proof of part (i).
To prove (ii) let W = (w k , kEN) '" 0 for which

(n E Pl.

Define f E X p by the series

(n - (0).

(

XJ )1/2
.L: a~ = Wk

;=k

(k EN),

Therefore, Kintchin's inequality and (2) imply that f EX P and

(k EN).

640761-4
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Consequently, IE H;, and
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(n --. (0).

The proof of (ii) can be completed by Lemma 2.
The hypothesis of (iii) implies lidS2nIlip = O(2n

Gt 2n) and E2n(f1 X n)=
O(:X 2n) (n-+ <Xl). Applying (to) and (t3) we obtain

Cto (2 kWp(2- k,f))pr
p<4Cto (2 k IILldllp))pr

p
+4.2nwp(2- n- I

,f)

<ApCtolldLldll~Y/p+4·2nwp(2- n 1,f)

= AI' IIA(dS2nf)11 XP(IP) + 4· 2nw p (2 -n - l,f).

Therefore, it follows from (7) that

(n EN),

which is equivalent to the statement of (iii).
Finally, to the proof of (iv) we must show that for any g E Q p there exists

IE L p such that g E H,;r. To this end let g be an arbitrary element of Q p and
introduce the notation w j =w,,(2 j, g) (JEN).

Define (tk> kEN) as

Set

to=O, (t5)

( 16)

where Gk is determined by the identity IIIk III' = W{k (k EN). Here J denotes
the inverse of the dyadic operator d. Let I = LC:~ 0 Ik' Then, we have by the
definition of (tk> kEN) and (2) that for tk <n < tk + 1

00 xc

wp(2 -n, f) ~ 2 I II./jllp = 2 L w{] <4W{k <8wn,
j~k j~k

i.e.,fEQp. On the other hand by (2) and (5)

wp(2 -n,f) ~ wp(2 - (/k + 1 - I ),f) ~ III - S2(k+ 1-1/11"

~ IILl tk +1 - Jill' = IIlkllp = W1k ~ W n ·

Consequently, wp(2-n,f)~wp(2-n,g). In particular, gEH';J.
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It remains to establishfEIp ' Let {k~n<tk+l (n,kEN) and note by
definition that the supports of dfj's are disjoint, i.e., supp dfj n supp df, = 0
(i, j EN, i #- j). Then we have by (10) that

k-l k--I k-l

IldS2.fll ~ = L Ildfjll ~ ~ 4P L (2 /
/+ 1 11~lIp)P = 4P L (2 11

+ lWI)P.
j~O j~O j~O

It follows from the construction of (Ib kEN) that

/) + I - )

(2 11 + lWI)P ~ 4 P L (2 m wm )p
m =Ij

Consequently,

(jEN).

(n -> CfJ).

On the other hand, E 2.(f, X P) = 0(1X 2.) follows easily from the fact that
f EQ P' This completes the proof of (iv). I

Proof of Theorem 3. Let f EX p. Thus by (2), (9), and (10)

II dS2·fll P ~ IIA dS 2"fll XP(lP) = IIA dS2"fII,p(XP)

~ 4 C~: (2 k IIAdllp)P) l/p

~4Cto (2k
W p (2\fWY"P (nEP).

In particular, if f satisfies the condition of (i) then

and (n -> 00).

Hence, by Corollary 2 we have Ilf - adll p = O(lX k ) (k -> (0). The statement
of (i) is proved.

Next, let w=(wbkEN) '" 0 such that (LZ~o(2kwdP)liP#-0(rIX2")

(n->oo). Define Ib fk (kEN) and fEXP as in (15) and (16). Set
{k ~ n < tk + 1 (n, kEN). Then similarly to the proof of (iv) of Theorem 2
we obtain wp(2-",f)~8w". Hence fEH;. Introducing the sequence
f3n=(lln)infbn krxk (nEN) we obviously have (LZ~o(2kWdP)liP#

0(2"/32.) (n -> (0). By the definition of ~- it is easy to see that
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Since 2'f321 increases, and f321 \i 0 as j -> CfJ it follows from the above
estimation that

I (" . )111' I (k I )1/1'-,-,- I (2'wy' ::::; 2 -1-,- I (2 //. IWI/V
2 f32' i~() 2 f32(k j~()

I ( k )1/1'
+2 " (2 /

1'IW )" .
21, • 1f3 L. i/

21k. + 1 j= 0

Consequently,

I (k 1 ) Ii"
lim sup -1-,- L (2 1

// lw t ,)" = W.
k -. f. 2 f32(, i~(J

(17)

On the other hand, it follows from the definition of.~, ~ and from (10) that

k·· I k I

IldS2!dll~= L Ildf;II;;~Ap I (2 1111 Ilf;lI p)1'
i~O i=O

k-I

= A" L (y" IW i)l'.
i~ 0

Hence we conclude from (17) that IldS2, fll l'#O(2"{32") (n->x). The proof
of (ii) can be completed by Theorem I.

To verify (iii) suppose that fEXp such that IIf-o-dllp=O(ctd
(k-> :Xi). Then we have by (10), (9), (8), and (4)

C~~ (2
k II Adll,Y )'/2 ~ A" C~~ 11.1 k(dS2nf)lI;f2 = AI' 1IL\(dS2nf)1112(x P )

::::;A" 11L\(dS2nf)IIXPU'l::::;Ap IIdS2nflll' (nEP).

The inequality (13) and Corollary 2 imply the statement of (iii).
It remains to establish (iv). To this end let gEQ;, and use the notation

w,,=wl'(2 ", g) (nEN). Set

where ak = (w~ - w~ + 1)1/2 (k EN). Thus

Hence, similarly to the proof of (ii) of Theorem 2, we can conclude from
(2) and Kintchin's inequality that f E XI' and g E H;J.
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IldS2"fllp~ApCt: (2kadf2 ~ApCt: (2kWk)2r
2

,

and by (3) we have E2"(f,XP)~llf-S2"fllp~Cpw1I~Cp~2" (nEN).
Consequently, in view of Lemma 2 and Corollary 2 we have IE L p • I

Proof of Theorem 4. Suppose that f EX p (p = I or 00) satisfies the
hypothesis of (i). Then we have by (10)

11-1 11-1

IldS2"fII p~ L IIdLfdll p~ 4 L 2k IILfdil p
k~O k~O

11-1

~4 L 2kwp(2- k,f)=O(2"(>:2")
k~O

(n -> 00 ).

Since the second assumption of (12) follows obviously from our hypothesis,
Corollary 2 implies III - adll p = O(~k) as k ->x.

Next denote W = (wk, kEN) '" 0 for which LZ ~ 0 Wk of 0(2"(>:2") (n -> 00).

Let (tk , kEN) be as in (15). Set

if p= 1

if p = 00,

where ak is determined by Ilfkllp = WI', (kEN). Using the same arguments
those in the proof of Theorem 2 we obtain

By definition we have

and

supp dij n supp dlk = 0

and

(j, kEN, j of k) if p = 1

(kEN) if p= 00.

Therefore, the definition of (/bkEN) and (10) imply for Ik~n<tk+l

(n, kEN) that

k-I k-l

IIdS2rdilp = I Ildijllp ~ c L 2r
}+ I HJ;,lI p

)~O )~O

k - 1

= C L 2r}, 'Wr} (n E Pl·
)=0
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Using the same arguments as those in the proof of (ii) of Theorem 3 we
obtain I ¢ 1:p •

In order to show (iii) setlEX p with III - <Tdllp= O(lXn ) as k -+ w. Then
Corollary 2and (10) imply

(O<k<n).

In particular, (2) implies

2
k
w p (2 \f)~2'2kC~: IIAJIIr,+llf- S 2n fllp)

~ C2 n
IX 2n (k, n E N, k < n),

which was to be proved.
Finally, let gEQ;* and wn=w

1
,(2 n,f) (nEN). To prove (iv) it suffices

to show the existence of an f E 1:p for which

(n EN).

To this end first let p = W, and denote by Uk' kEN), (tk> kEN) the same
sequences as those in (15) and (16). Thus KEH'u/. If tk~n<tk+1

(k, n EN) then by definition we have

IldS2"/llx = max Ildt;ll, ~ max C2 f
,W f , = O(2 ncx 2n)

OeJek Oejek
(n-+ oc).

If p=l then let (tk,kEN) be as before. Set lo=w,ro, and define.t~

inductively as

k-'

dlk = akr fk +1 I I d.!;,
j~O

where ak is determined by IIfk III = Wfk(k EN). Clearly f =L~~Ofk EX' and
gE H~ol. On the other hand, it can be proved by induction that if
t k ~ n < t k +, (k, n E N) then

IIdS2nfll, = max lid.!; II , ~ max e2f 'w f = O(2n
IX 2n)

OeJek Oejek J

Indeed, we have from the construction of Ik that

(n -+x).

if ak +, > I

if ak +, ~ 1.

This completes the proof of Theorem 4. I
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In this section we show some of the consequences of our results. The (i)
parts of Theorems 2--4 can be used to estimate the rate of convergence of
the Cesaro means of an arbitrary f EX P (1 ~ p ~ 00). However, that rate
may not be the best possible for that individual function, but it is for the
Holder class generated by f This follows from the (ii) parts of the
theorems. In particular, if wp (2 ", f) = 2 -II,. (0 <)' ~ I )-for the existence
of such a function see [3,8} -then H~JI= Lip()', XP). It is easy to see that
as a consequence of Theorems 2-4 we receive the well-known result
[12,13], i.e., Ilf - o-,Jll p= O(n )') (0 <)' < 1) if and only if fE Lip()', XP).
It is known [12,13], thatfELip(I,XP) implies Il.f-o-,JIIP=O(1ogn/n)
(n -> oc). Applying our results for this situation we can conclude that this
is the best possible estimation if p = I, oc, but not for the other cases.
Namely the following theorem is true.

THEOREM 5. Let f E Lip(l, X P) (l ~ P~ 00 ).

(i) If p= 1 or 00 then

(
log n)

Ilf - 0-"flip = 0 -n-

(ii) If 1< P ~ 2 then

(
(log n)l/p)

IIf-o-,Jll p =O n

(iii) If 2 ~ p < 00 then

Ilf - o-n/llp = 0 ((lOgnn)I/2)

(n -> 00 ).

(n -> 00).

(n -> 00).

These results cannot be improved.

The problem of characterizing the Favard (saturation) class of the
Cesaro summation via the XP modulus of continuity was posed by Moricz
and Siddiqi in [6]. In our case the saturation class is the collection of
functions for which IIf - 0-n/llp= O(n I) (n -> 00). The solution of the
above problem reads as follows.

THEOREM 6. Let fE XP (l ~ P ~ 00).

(i) If
00

L: k q
- Iw;(n - t, f) < 00,

k=O
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where q = p if 1< p ~ 2, q = 2 if 2~ p < 00, and q = 1 if p = 1 or 00, then

IIf - O',Jll p = O(n - I) (n ~ 00).

(ii) The above conditions cannot be weakened.

(iii) If IIf - O',Jll p = O(n I) (n ~ 00), then

I k q 1(J)~(n I, f) < 00,
k=O

where q = 2 if 1 < p ~ 2, q = P if 2 ~ p < W, and

fE Lip(l, XP)

if p = I or oc.

(iv) The result of (iii) cannot he improved.

We note that the case (i) follows from the results of Moricz and Siddiqi
[6] for p= I or 00.

Our final remark concerns the relation between the type of conditions in
the above theorems for the cases 1 < p < wand p = 1 or w. It can be seen
that the L 1 and Cw spaces do not act as limit cases of LP (1 < p < rYJ). This
is especially clear in Theorems 5 and 6. To fill this gap one must take
the dyadic Hardy and VMO spaces. It is not hard to check that our
technique applied for 1 < P < w can be extended for these spaces. The
corresponding results for the dyadic Hardy space can be obtained formally
from the LP (1 < p < 00) results by letting p -> 1. Similarly, the results for
the VMO space are obtained by letting p ~ 00. The dyadic Hardy and
VMO spaces behave similarly, for instance, in problems connected with
embedding relations [4].

REFERENCES

1. P. L. BUTZER AND H. J. WAGNER, Walsh series and the concept of a derivative, Appl. Anal.
3 (1973), 29-46.

2. N. J. FINE, On the Walsh functions, Trans. ArneI'. Math. Soc. 65 (1949),372-414.
3. S. FRIDLI, On the modulus of continuity with respect to functions defined on Vilenkin

groups, Acta Math. Hungar. 45 (1985), 393-396.
4. S. FRIDLI, Embedding theorems involving dyadic Hardy and VMO spaces, Colloq. Math.

Soc. Hmos Bolyai 58 (1990), 285-30 I.
5. 1. J06, On some problems of M. Horvath, Ann. Unit'. Sci. Budapest Sect. Math. 31 (1988),

243-260.
6. F. MORICZ AND A. H. SIDDIQI, Approximation by Niirlund means of Walsh-Fourier

series, J. Approx. Theory 70 (1993), 375-389.



CESARO MEANS OF WALSH-FOURIER SERIES 53

7. R. E. A. C. PALEY, A remarkable system of orthogonal functions, Proc. London Math.
Soc. 34 (1932), 241-279.

8. A. I. RUBINSTE1N, On the modulus of continuity and best approximation of functions
defined by lacunary Walsh series in LP, Izv. Vyssh. Uchebn. Zaved. Mat. 252 (1983),
61-68. [In Russian]

9. F. SCHIPP, W. R. WADE, AND P. SIMON (with assistance from J. Pal), "Walsh Series,"
Hilger, Bristol/New York, 1990.

10. E. M. STEIN, "Topics in Harmonic Analysis Related to the Littlewood-Paley Theory,"
Princeton Univ. Press, Princeton, NJ, 1970.

II. W. TREBELS, "Multipliers for (C, Il)-bounded Fourier expansions in Banach spaces and
Approximation Theory," Lecture Notes in Mathematics, Vol. 329, Springer-Verlag,
Berlin/HeidelbergjNew York, 1973.

12. C. WATARI, Best apprixmation by Walsh polynomials, Tohoku Math. 1. 15 (1963),1-5.
13. SH. YANO, Cesaro summability of Walsh-Fourier series, Tohoku Math. J. 9 (1957),

267-272.


